Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Theorems of part 5 revised
zeoALTV
Next ⟩
zeo2ALTV
Metamath Proof Explorer
Ascii
Unicode
Theorem
zeoALTV
Description:
An integer is even or odd.
(Contributed by
NM
, 1-Jan-2006)
(Revised by
AV
, 16-Jun-2020)
Ref
Expression
Assertion
zeoALTV
⊢
Z
∈
ℤ
→
Z
∈
Even
∨
Z
∈
Odd
Proof
Step
Hyp
Ref
Expression
1
zeo
⊢
Z
∈
ℤ
→
Z
2
∈
ℤ
∨
Z
+
1
2
∈
ℤ
2
1
ancli
⊢
Z
∈
ℤ
→
Z
∈
ℤ
∧
Z
2
∈
ℤ
∨
Z
+
1
2
∈
ℤ
3
andi
⊢
Z
∈
ℤ
∧
Z
2
∈
ℤ
∨
Z
+
1
2
∈
ℤ
↔
Z
∈
ℤ
∧
Z
2
∈
ℤ
∨
Z
∈
ℤ
∧
Z
+
1
2
∈
ℤ
4
2
3
sylib
⊢
Z
∈
ℤ
→
Z
∈
ℤ
∧
Z
2
∈
ℤ
∨
Z
∈
ℤ
∧
Z
+
1
2
∈
ℤ
5
iseven
⊢
Z
∈
Even
↔
Z
∈
ℤ
∧
Z
2
∈
ℤ
6
isodd
⊢
Z
∈
Odd
↔
Z
∈
ℤ
∧
Z
+
1
2
∈
ℤ
7
5
6
orbi12i
⊢
Z
∈
Even
∨
Z
∈
Odd
↔
Z
∈
ℤ
∧
Z
2
∈
ℤ
∨
Z
∈
ℤ
∧
Z
+
1
2
∈
ℤ
8
4
7
sylibr
⊢
Z
∈
ℤ
→
Z
∈
Even
∨
Z
∈
Odd