Metamath Proof Explorer


Theorem zeoALTV

Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006) (Revised by AV, 16-Jun-2020)

Ref Expression
Assertion zeoALTV Z Z Even Z Odd

Proof

Step Hyp Ref Expression
1 zeo Z Z 2 Z + 1 2
2 1 ancli Z Z Z 2 Z + 1 2
3 andi Z Z 2 Z + 1 2 Z Z 2 Z Z + 1 2
4 2 3 sylib Z Z Z 2 Z Z + 1 2
5 iseven Z Even Z Z 2
6 isodd Z Odd Z Z + 1 2
7 5 6 orbi12i Z Even Z Odd Z Z 2 Z Z + 1 2
8 4 7 sylibr Z Z Even Z Odd