Step |
Hyp |
Ref |
Expression |
1 |
|
zerdivempx.1 |
|
2 |
|
zerdivempx.2 |
|
3 |
|
zerdivempx.3 |
|
4 |
|
zerdivempx.4 |
|
5 |
|
zerdivempx.5 |
|
6 |
|
oveq2 |
|
7 |
|
simpl1 |
|
8 |
|
simpr1 |
|
9 |
|
simpr3 |
|
10 |
|
simpl3 |
|
11 |
1 2 4
|
rngoass |
|
12 |
7 8 9 10 11
|
syl13anc |
|
13 |
|
eqtr |
|
14 |
13
|
ex |
|
15 |
|
eqtr |
|
16 |
3 4 1 2
|
rngorz |
|
17 |
16
|
3adant3 |
|
18 |
1
|
rneqi |
|
19 |
4 18
|
eqtri |
|
20 |
2 19 5
|
rngolidm |
|
21 |
20
|
3adant2 |
|
22 |
|
simp1 |
|
23 |
|
simp2 |
|
24 |
|
simp3 |
|
25 |
22 23 24
|
3eqtr3d |
|
26 |
25
|
a1d |
|
27 |
26
|
3exp |
|
28 |
27
|
com14 |
|
29 |
28
|
com13 |
|
30 |
17 21 29
|
sylc |
|
31 |
30
|
3exp |
|
32 |
31
|
com15 |
|
33 |
32
|
com24 |
|
34 |
15 33
|
syl |
|
35 |
34
|
ex |
|
36 |
35
|
eqcoms |
|
37 |
36
|
com25 |
|
38 |
|
oveq1 |
|
39 |
37 38
|
syl11 |
|
40 |
39
|
3imp |
|
41 |
40
|
com13 |
|
42 |
14 41
|
syl6 |
|
43 |
42
|
com15 |
|
44 |
43
|
3imp1 |
|
45 |
12 44
|
mpd |
|
46 |
45
|
3exp1 |
|
47 |
6 46
|
syl5com |
|
48 |
47
|
com14 |
|
49 |
48
|
3exp |
|
50 |
49
|
rexlimiv |
|
51 |
50
|
com13 |
|
52 |
51
|
3imp |
|