Metamath Proof Explorer


Theorem zerooval

Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses initoval.c φCCat
initoval.b B=BaseC
initoval.h H=HomC
Assertion zerooval φZeroOC=InitOCTermOC

Proof

Step Hyp Ref Expression
1 initoval.c φCCat
2 initoval.b B=BaseC
3 initoval.h H=HomC
4 df-zeroo ZeroO=cCatInitOcTermOc
5 fveq2 c=CInitOc=InitOC
6 fveq2 c=CTermOc=TermOC
7 5 6 ineq12d c=CInitOcTermOc=InitOCTermOC
8 fvex InitOCV
9 8 inex1 InitOCTermOCV
10 9 a1i φInitOCTermOCV
11 4 7 1 10 fvmptd3 φZeroOC=InitOCTermOC