Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|
2 |
|
sqval |
|
3 |
1 2
|
syl |
|
4 |
3
|
oveq1d |
|
5 |
|
2cnd |
|
6 |
|
2ne0 |
|
7 |
6
|
a1i |
|
8 |
1 1 5 7
|
divassd |
|
9 |
4 8
|
eqtrd |
|
10 |
9
|
adantr |
|
11 |
|
zmulcl |
|
12 |
10 11
|
eqeltrd |
|
13 |
1
|
adantr |
|
14 |
|
sqcl |
|
15 |
13 14
|
syl |
|
16 |
|
peano2cn |
|
17 |
15 16
|
syl |
|
18 |
17
|
halfcld |
|
19 |
18 13
|
pncand |
|
20 |
|
binom21 |
|
21 |
13 20
|
syl |
|
22 |
|
peano2cn |
|
23 |
13 22
|
syl |
|
24 |
|
sqval |
|
25 |
23 24
|
syl |
|
26 |
|
2cn |
|
27 |
|
mulcl |
|
28 |
26 13 27
|
sylancr |
|
29 |
|
1cnd |
|
30 |
15 28 29
|
add32d |
|
31 |
21 25 30
|
3eqtr3d |
|
32 |
31
|
oveq1d |
|
33 |
|
2cnd |
|
34 |
6
|
a1i |
|
35 |
23 23 33 34
|
divassd |
|
36 |
17 28 33 34
|
divdird |
|
37 |
13 33 34
|
divcan3d |
|
38 |
37
|
oveq2d |
|
39 |
36 38
|
eqtrd |
|
40 |
32 35 39
|
3eqtr3d |
|
41 |
|
peano2z |
|
42 |
|
zmulcl |
|
43 |
41 42
|
sylan |
|
44 |
40 43
|
eqeltrrd |
|
45 |
|
simpl |
|
46 |
44 45
|
zsubcld |
|
47 |
19 46
|
eqeltrrd |
|
48 |
47
|
ex |
|
49 |
48
|
con3d |
|
50 |
|
zsqcl |
|
51 |
|
zeo2 |
|
52 |
50 51
|
syl |
|
53 |
|
zeo2 |
|
54 |
49 52 53
|
3imtr4d |
|
55 |
54
|
imp |
|
56 |
12 55
|
impbida |
|