Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
zexpcl
Next ⟩
qexpcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
zexpcl
Description:
Closure of exponentiation of integers.
(Contributed by
NM
, 16-Dec-2005)
Ref
Expression
Assertion
zexpcl
⊢
A
∈
ℤ
∧
N
∈
ℕ
0
→
A
N
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
zsscn
⊢
ℤ
⊆
ℂ
2
zmulcl
⊢
x
∈
ℤ
∧
y
∈
ℤ
→
x
⁢
y
∈
ℤ
3
1z
⊢
1
∈
ℤ
4
1
2
3
expcllem
⊢
A
∈
ℤ
∧
N
∈
ℕ
0
→
A
N
∈
ℤ