Metamath Proof Explorer


Theorem zextle

Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005)

Ref Expression
Assertion zextle M N k k M k N M = N

Proof

Step Hyp Ref Expression
1 zre M M
2 1 leidd M M M
3 2 adantr M k k M k N M M
4 breq1 k = M k M M M
5 breq1 k = M k N M N
6 4 5 bibi12d k = M k M k N M M M N
7 6 rspcva M k k M k N M M M N
8 3 7 mpbid M k k M k N M N
9 8 adantlr M N k k M k N M N
10 zre N N
11 10 leidd N N N
12 11 adantr N k k M k N N N
13 breq1 k = N k M N M
14 breq1 k = N k N N N
15 13 14 bibi12d k = N k M k N N M N N
16 15 rspcva N k k M k N N M N N
17 12 16 mpbird N k k M k N N M
18 17 adantll M N k k M k N N M
19 9 18 jca M N k k M k N M N N M
20 19 ex M N k k M k N M N N M
21 letri3 M N M = N M N N M
22 1 10 21 syl2an M N M = N M N N M
23 20 22 sylibrd M N k k M k N M = N
24 23 3impia M N k k M k N M = N