Metamath Proof Explorer


Theorem zextlt

Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005)

Ref Expression
Assertion zextlt MNkk<Mk<NM=N

Proof

Step Hyp Ref Expression
1 zltlem1 kMk<MkM1
2 1 adantrr kMNk<MkM1
3 zltlem1 kNk<NkN1
4 3 adantrl kMNk<NkN1
5 2 4 bibi12d kMNk<Mk<NkM1kN1
6 5 ancoms MNkk<Mk<NkM1kN1
7 6 ralbidva MNkk<Mk<NkkM1kN1
8 peano2zm MM1
9 peano2zm NN1
10 zextle M1N1kkM1kN1M1=N1
11 10 3expia M1N1kkM1kN1M1=N1
12 8 9 11 syl2an MNkkM1kN1M1=N1
13 zcn MM
14 zcn NN
15 ax-1cn 1
16 subcan2 MN1M1=N1M=N
17 15 16 mp3an3 MNM1=N1M=N
18 13 14 17 syl2an MNM1=N1M=N
19 12 18 sylibd MNkkM1kN1M=N
20 7 19 sylbid MNkk<Mk<NM=N
21 20 3impia MNkk<Mk<NM=N