Metamath Proof Explorer


Theorem zextlt

Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005)

Ref Expression
Assertion zextlt M N k k < M k < N M = N

Proof

Step Hyp Ref Expression
1 zltlem1 k M k < M k M 1
2 1 adantrr k M N k < M k M 1
3 zltlem1 k N k < N k N 1
4 3 adantrl k M N k < N k N 1
5 2 4 bibi12d k M N k < M k < N k M 1 k N 1
6 5 ancoms M N k k < M k < N k M 1 k N 1
7 6 ralbidva M N k k < M k < N k k M 1 k N 1
8 peano2zm M M 1
9 peano2zm N N 1
10 zextle M 1 N 1 k k M 1 k N 1 M 1 = N 1
11 10 3expia M 1 N 1 k k M 1 k N 1 M 1 = N 1
12 8 9 11 syl2an M N k k M 1 k N 1 M 1 = N 1
13 zcn M M
14 zcn N N
15 ax-1cn 1
16 subcan2 M N 1 M 1 = N 1 M = N
17 15 16 mp3an3 M N M 1 = N 1 M = N
18 13 14 17 syl2an M N M 1 = N 1 M = N
19 12 18 sylibd M N k k M 1 k N 1 M = N
20 7 19 sylbid M N k k < M k < N M = N
21 20 3impia M N k k < M k < N M = N