Metamath Proof Explorer


Theorem zfallfaccl

Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion zfallfaccl A N 0 A N _

Proof

Step Hyp Ref Expression
1 zsscn
2 1z 1
3 zmulcl x y x y
4 nn0z k 0 k
5 zsubcl A k A k
6 4 5 sylan2 A k 0 A k
7 1 2 3 6 fallfaccllem A N 0 A N _