Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
zfallfaccl
Next ⟩
nn0risefaccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
zfallfaccl
Description:
Closure law for falling factorial.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Assertion
zfallfaccl
⊢
A
∈
ℤ
∧
N
∈
ℕ
0
→
A
N
_
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
zsscn
⊢
ℤ
⊆
ℂ
2
1z
⊢
1
∈
ℤ
3
zmulcl
⊢
x
∈
ℤ
∧
y
∈
ℤ
→
x
⁢
y
∈
ℤ
4
nn0z
⊢
k
∈
ℕ
0
→
k
∈
ℤ
5
zsubcl
⊢
A
∈
ℤ
∧
k
∈
ℤ
→
A
−
k
∈
ℤ
6
4
5
sylan2
⊢
A
∈
ℤ
∧
k
∈
ℕ
0
→
A
−
k
∈
ℤ
7
1
2
3
6
fallfaccllem
⊢
A
∈
ℤ
∧
N
∈
ℕ
0
→
A
N
_
∈
ℤ