Metamath Proof Explorer


Theorem zfausab

Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994)

Ref Expression
Hypothesis zfausab.1 A V
Assertion zfausab x | x A φ V

Proof

Step Hyp Ref Expression
1 zfausab.1 A V
2 ssab2 x | x A φ A
3 1 2 ssexi x | x A φ V