Metamath Proof Explorer


Theorem zfcndreg

Description: Axiom of Regularity ax-reg , reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zfcndreg y y x y y x z z y ¬ z x

Proof

Step Hyp Ref Expression
1 nfe1 y y y x z z y ¬ z x
2 axregnd y x y y x z z y ¬ z x
3 1 2 exlimi y y x y y x z z y ¬ z x