Metamath Proof Explorer


Theorem zfpair2

Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr . See zfpair for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006)

Ref Expression
Assertion zfpair2 x y V

Proof

Step Hyp Ref Expression
1 ax-pr z w w = x w = y w z
2 1 bm1.3ii z w w z w = x w = y
3 dfcleq z = x y w w z w x y
4 vex w V
5 4 elpr w x y w = x w = y
6 5 bibi2i w z w x y w z w = x w = y
7 6 albii w w z w x y w w z w = x w = y
8 3 7 bitri z = x y w w z w = x w = y
9 8 exbii z z = x y z w w z w = x w = y
10 2 9 mpbir z z = x y
11 10 issetri x y V