Metamath Proof Explorer


Theorem zfregfr

Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995)

Ref Expression
Assertion zfregfr E Fr A

Proof

Step Hyp Ref Expression
1 dfepfr E Fr A x x A x y x x y =
2 vex x V
3 zfreg x V x y x y x =
4 2 3 mpan x y x y x =
5 incom y x = x y
6 5 eqeq1i y x = x y =
7 6 rexbii y x y x = y x x y =
8 4 7 sylib x y x x y =
9 8 adantl x A x y x x y =
10 1 9 mpgbir E Fr A