Metamath Proof Explorer


Theorem zfrep3cl

Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)

Ref Expression
Hypotheses zfrep3cl.1 A V
zfrep3cl.2 x A z y φ y = z
Assertion zfrep3cl z y y z x x A φ

Proof

Step Hyp Ref Expression
1 zfrep3cl.1 A V
2 zfrep3cl.2 x A z y φ y = z
3 nfcv _ x A
4 3 1 2 zfrepclf z y y z x x A φ