Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Properties of the canonical representation of a rational
zgcdsq
Next ⟩
numdensq
Metamath Proof Explorer
Ascii
Unicode
Theorem
zgcdsq
Description:
nn0gcdsq
extended to integers by symmetry.
(Contributed by
Stefan O'Rear
, 15-Sep-2014)
Ref
Expression
Assertion
zgcdsq
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
2
=
A
2
gcd
B
2
Proof
Step
Hyp
Ref
Expression
1
gcdabs
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
=
A
gcd
B
2
1
eqcomd
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
=
A
gcd
B
3
2
oveq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
2
=
A
gcd
B
2
4
nn0abscl
⊢
A
∈
ℤ
→
A
∈
ℕ
0
5
nn0abscl
⊢
B
∈
ℤ
→
B
∈
ℕ
0
6
nn0gcdsq
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
→
A
gcd
B
2
=
A
2
gcd
B
2
7
4
5
6
syl2an
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
2
=
A
2
gcd
B
2
8
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
9
8
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
∈
ℝ
10
absresq
⊢
A
∈
ℝ
→
A
2
=
A
2
11
9
10
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
2
=
A
2
12
zre
⊢
B
∈
ℤ
→
B
∈
ℝ
13
12
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
B
∈
ℝ
14
absresq
⊢
B
∈
ℝ
→
B
2
=
B
2
15
13
14
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
B
2
=
B
2
16
11
15
oveq12d
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
2
gcd
B
2
=
A
2
gcd
B
2
17
3
7
16
3eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
2
=
A
2
gcd
B
2