Metamath Proof Explorer


Theorem zgeltp1eq

Description: If an integer is between another integer and its successor, the integer is equal to the other integer. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion zgeltp1eq I A A I I < A + 1 I = A

Proof

Step Hyp Ref Expression
1 simprr I A A I I < A + 1 I < A + 1
2 zleltp1 I A I A I < A + 1
3 2 adantr I A A I I < A + 1 I A I < A + 1
4 1 3 mpbird I A A I I < A + 1 I A
5 simprl I A A I I < A + 1 A I
6 zre I I
7 zre A A
8 letri3 I A I = A I A A I
9 6 7 8 syl2an I A I = A I A A I
10 9 adantr I A A I I < A + 1 I = A I A A I
11 4 5 10 mpbir2and I A A I I < A + 1 I = A
12 11 ex I A A I I < A + 1 I = A