Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Lagrange's four-square theorem
zgz
Next ⟩
igz
Metamath Proof Explorer
Ascii
Unicode
Theorem
zgz
Description:
An integer is a gaussian integer.
(Contributed by
Mario Carneiro
, 14-Jul-2014)
Ref
Expression
Assertion
zgz
⊢
A
∈
ℤ
→
A
∈
ℤ
i
Proof
Step
Hyp
Ref
Expression
1
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
2
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
3
2
rered
⊢
A
∈
ℤ
→
ℜ
⁡
A
=
A
4
id
⊢
A
∈
ℤ
→
A
∈
ℤ
5
3
4
eqeltrd
⊢
A
∈
ℤ
→
ℜ
⁡
A
∈
ℤ
6
2
reim0d
⊢
A
∈
ℤ
→
ℑ
⁡
A
=
0
7
0z
⊢
0
∈
ℤ
8
6
7
eqeltrdi
⊢
A
∈
ℤ
→
ℑ
⁡
A
∈
ℤ
9
elgz
⊢
A
∈
ℤ
i
↔
A
∈
ℂ
∧
ℜ
⁡
A
∈
ℤ
∧
ℑ
⁡
A
∈
ℤ
10
1
5
8
9
syl3anbrc
⊢
A
∈
ℤ
→
A
∈
ℤ
i