Metamath Proof Explorer


Theorem zle0orge1

Description: There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1 . (Contributed by AV, 4-Jun-2023)

Ref Expression
Assertion zle0orge1 Z Z 0 1 Z

Proof

Step Hyp Ref Expression
1 elznn Z Z Z Z 0
2 nnge1 Z 1 Z
3 2 a1i Z Z 1 Z
4 elnn0z Z 0 Z 0 Z
5 le0neg1 Z Z 0 0 Z
6 5 biimprd Z 0 Z Z 0
7 6 adantld Z Z 0 Z Z 0
8 4 7 syl5bi Z Z 0 Z 0
9 3 8 orim12d Z Z Z 0 1 Z Z 0
10 9 imp Z Z Z 0 1 Z Z 0
11 10 orcomd Z Z Z 0 Z 0 1 Z
12 1 11 sylbi Z Z 0 1 Z