Metamath Proof Explorer


Theorem zlem1lt

Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004)

Ref Expression
Assertion zlem1lt M N M N M 1 < N

Proof

Step Hyp Ref Expression
1 peano2zm M M 1
2 zltp1le M 1 N M 1 < N M - 1 + 1 N
3 1 2 sylan M N M 1 < N M - 1 + 1 N
4 zcn M M
5 ax-1cn 1
6 npcan M 1 M - 1 + 1 = M
7 4 5 6 sylancl M M - 1 + 1 = M
8 7 adantr M N M - 1 + 1 = M
9 8 breq1d M N M - 1 + 1 N M N
10 3 9 bitr2d M N M N M 1 < N