Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zlem1lt
Next ⟩
zltlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
zlem1lt
Description:
Integer ordering relation.
(Contributed by
NM
, 13-Nov-2004)
Ref
Expression
Assertion
zlem1lt
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
M
−
1
<
N
Proof
Step
Hyp
Ref
Expression
1
peano2zm
⊢
M
∈
ℤ
→
M
−
1
∈
ℤ
2
zltp1le
⊢
M
−
1
∈
ℤ
∧
N
∈
ℤ
→
M
−
1
<
N
↔
M
-
1
+
1
≤
N
3
1
2
sylan
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
−
1
<
N
↔
M
-
1
+
1
≤
N
4
zcn
⊢
M
∈
ℤ
→
M
∈
ℂ
5
ax-1cn
⊢
1
∈
ℂ
6
npcan
⊢
M
∈
ℂ
∧
1
∈
ℂ
→
M
-
1
+
1
=
M
7
4
5
6
sylancl
⊢
M
∈
ℤ
→
M
-
1
+
1
=
M
8
7
adantr
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
-
1
+
1
=
M
9
8
breq1d
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
-
1
+
1
≤
N
↔
M
≤
N
10
3
9
bitr2d
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
M
−
1
<
N