Description: The ZZ -module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | zlmclm.w | |
|
Assertion | zlmclm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmclm.w | |
|
2 | 1 | zlmlmod | |
3 | 2 | biimpi | |
4 | 1 | zlmsca | |
5 | df-zring | |
|
6 | 4 5 | eqtr3di | |
7 | zsubrg | |
|
8 | 7 | a1i | |
9 | eqid | |
|
10 | 9 | isclmi | |
11 | 3 6 8 10 | syl3anc | |
12 | clmlmod | |
|
13 | 12 2 | sylibr | |
14 | 11 13 | impbii | |