Metamath Proof Explorer


Theorem zlmclm

Description: The ZZ -module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015)

Ref Expression
Hypothesis zlmclm.w W=ℤModG
Assertion zlmclm GAbelWCMod

Proof

Step Hyp Ref Expression
1 zlmclm.w W=ℤModG
2 1 zlmlmod GAbelWLMod
3 2 biimpi GAbelWLMod
4 1 zlmsca GAbelring=ScalarW
5 df-zring ring=fld𝑠
6 4 5 eqtr3di GAbelScalarW=fld𝑠
7 zsubrg SubRingfld
8 7 a1i GAbelSubRingfld
9 eqid ScalarW=ScalarW
10 9 isclmi WLModScalarW=fld𝑠SubRingfldWCMod
11 3 6 8 10 syl3anc GAbelWCMod
12 clmlmod WCModWLMod
13 12 2 sylibr WCModGAbel
14 11 13 impbii GAbelWCMod