Metamath Proof Explorer


Theorem zlmlemOLD

Description: Obsolete version of zlmlem as of 3-Nov-2024. Lemma for zlmbas and zlmplusg . (Contributed by Mario Carneiro, 2-Oct-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses zlmbas.w W=ℤModG
zlmlemOLD.2 E=SlotN
zlmlemOLD.3 N
zlmlemOLD.4 N<5
Assertion zlmlemOLD EG=EW

Proof

Step Hyp Ref Expression
1 zlmbas.w W=ℤModG
2 zlmlemOLD.2 E=SlotN
3 zlmlemOLD.3 N
4 zlmlemOLD.4 N<5
5 2 3 ndxid E=SlotEndx
6 2 3 ndxarg Endx=N
7 3 nnrei N
8 6 7 eqeltri Endx
9 6 4 eqbrtri Endx<5
10 8 9 ltneii Endx5
11 scandx Scalarndx=5
12 10 11 neeqtrri EndxScalarndx
13 5 12 setsnid EG=EGsSetScalarndxring
14 5lt6 5<6
15 5re 5
16 6re 6
17 8 15 16 lttri Endx<55<6Endx<6
18 9 14 17 mp2an Endx<6
19 8 18 ltneii Endx6
20 vscandx ndx=6
21 19 20 neeqtrri Endxndx
22 5 21 setsnid EGsSetScalarndxring=EGsSetScalarndxringsSetndxG
23 13 22 eqtri EG=EGsSetScalarndxringsSetndxG
24 eqid G=G
25 1 24 zlmval GVW=GsSetScalarndxringsSetndxG
26 25 fveq2d GVEW=EGsSetScalarndxringsSetndxG
27 23 26 eqtr4id GVEG=EW
28 2 str0 =E
29 fvprc ¬GVEG=
30 fvprc ¬GVℤModG=
31 1 30 eqtrid ¬GVW=
32 31 fveq2d ¬GVEW=E
33 28 29 32 3eqtr4a ¬GVEG=EW
34 27 33 pm2.61i EG=EW