Metamath Proof Explorer


Theorem zlmlmod

Description: The ZZ -module operation turns an arbitrary abelian group into a left module over ZZ . Also see zlmassa . (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypothesis zlmlmod.w W=ℤModG
Assertion zlmlmod GAbelWLMod

Proof

Step Hyp Ref Expression
1 zlmlmod.w W=ℤModG
2 eqid BaseG=BaseG
3 1 2 zlmbas BaseG=BaseW
4 3 a1i GAbelBaseG=BaseW
5 eqid +G=+G
6 1 5 zlmplusg +G=+W
7 6 a1i GAbel+G=+W
8 1 zlmsca GAbelring=ScalarW
9 eqid G=G
10 1 9 zlmvsca G=W
11 10 a1i GAbelG=W
12 zringbas =Basering
13 12 a1i GAbel=Basering
14 zringplusg +=+ring
15 14 a1i GAbel+=+ring
16 zringmulr ×=ring
17 16 a1i GAbel×=ring
18 zring1 1=1ring
19 18 a1i GAbel1=1ring
20 zringring ringRing
21 20 a1i GAbelringRing
22 3 6 ablprop GAbelWAbel
23 ablgrp WAbelWGrp
24 22 23 sylbi GAbelWGrp
25 ablgrp GAbelGGrp
26 2 9 mulgcl GGrpxyBaseGxGyBaseG
27 25 26 syl3an1 GAbelxyBaseGxGyBaseG
28 2 9 5 mulgdi GAbelxyBaseGzBaseGxGy+Gz=xGy+GxGz
29 2 9 5 mulgdir GGrpxyzBaseGx+yGz=xGz+GyGz
30 25 29 sylan GAbelxyzBaseGx+yGz=xGz+GyGz
31 2 9 mulgass GGrpxyzBaseGxyGz=xGyGz
32 25 31 sylan GAbelxyzBaseGxyGz=xGyGz
33 2 9 mulg1 xBaseG1Gx=x
34 33 adantl GAbelxBaseG1Gx=x
35 4 7 8 11 13 15 17 19 21 24 27 28 30 32 34 islmodd GAbelWLMod
36 lmodabl WLModWAbel
37 36 22 sylibr WLModGAbel
38 35 37 impbii GAbelWLMod