Description: The ZZ -module operation turns an arbitrary abelian group into a left module over ZZ . Also see zlmassa . (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | zlmlmod.w | |
|
Assertion | zlmlmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlmod.w | |
|
2 | eqid | |
|
3 | 1 2 | zlmbas | |
4 | 3 | a1i | |
5 | eqid | |
|
6 | 1 5 | zlmplusg | |
7 | 6 | a1i | |
8 | 1 | zlmsca | |
9 | eqid | |
|
10 | 1 9 | zlmvsca | |
11 | 10 | a1i | |
12 | zringbas | |
|
13 | 12 | a1i | |
14 | zringplusg | |
|
15 | 14 | a1i | |
16 | zringmulr | |
|
17 | 16 | a1i | |
18 | zring1 | |
|
19 | 18 | a1i | |
20 | zringring | |
|
21 | 20 | a1i | |
22 | 3 6 | ablprop | |
23 | ablgrp | |
|
24 | 22 23 | sylbi | |
25 | ablgrp | |
|
26 | 2 9 | mulgcl | |
27 | 25 26 | syl3an1 | |
28 | 2 9 5 | mulgdi | |
29 | 2 9 5 | mulgdir | |
30 | 25 29 | sylan | |
31 | 2 9 | mulgass | |
32 | 25 31 | sylan | |
33 | 2 9 | mulg1 | |
34 | 33 | adantl | |
35 | 4 7 8 11 13 15 17 19 21 24 27 28 30 32 34 | islmodd | |
36 | lmodabl | |
|
37 | 36 22 | sylibr | |
38 | 35 37 | impbii | |