Metamath Proof Explorer


Theorem zlmsca

Description: Scalar ring of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypothesis zlmbas.w W = ℤMod G
Assertion zlmsca G V ring = Scalar W

Proof

Step Hyp Ref Expression
1 zlmbas.w W = ℤMod G
2 scaid Scalar = Slot Scalar ndx
3 5re 5
4 5lt6 5 < 6
5 3 4 ltneii 5 6
6 scandx Scalar ndx = 5
7 vscandx ndx = 6
8 6 7 neeq12i Scalar ndx ndx 5 6
9 5 8 mpbir Scalar ndx ndx
10 2 9 setsnid Scalar G sSet Scalar ndx ring = Scalar G sSet Scalar ndx ring sSet ndx G
11 zringring ring Ring
12 2 setsid G V ring Ring ring = Scalar G sSet Scalar ndx ring
13 11 12 mpan2 G V ring = Scalar G sSet Scalar ndx ring
14 eqid G = G
15 1 14 zlmval G V W = G sSet Scalar ndx ring sSet ndx G
16 15 fveq2d G V Scalar W = Scalar G sSet Scalar ndx ring sSet ndx G
17 10 13 16 3eqtr4a G V ring = Scalar W