Metamath Proof Explorer


Theorem zlmval

Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypotheses zlmval.w W = ℤMod G
zlmval.m · ˙ = G
Assertion zlmval G V W = G sSet Scalar ndx ring sSet ndx · ˙

Proof

Step Hyp Ref Expression
1 zlmval.w W = ℤMod G
2 zlmval.m · ˙ = G
3 elex G V G V
4 oveq1 g = G g sSet Scalar ndx ring = G sSet Scalar ndx ring
5 fveq2 g = G g = G
6 5 2 eqtr4di g = G g = · ˙
7 6 opeq2d g = G ndx g = ndx · ˙
8 4 7 oveq12d g = G g sSet Scalar ndx ring sSet ndx g = G sSet Scalar ndx ring sSet ndx · ˙
9 df-zlm ℤMod = g V g sSet Scalar ndx ring sSet ndx g
10 ovex G sSet Scalar ndx ring sSet ndx · ˙ V
11 8 9 10 fvmpt G V ℤMod G = G sSet Scalar ndx ring sSet ndx · ˙
12 3 11 syl G V ℤMod G = G sSet Scalar ndx ring sSet ndx · ˙
13 1 12 eqtrid G V W = G sSet Scalar ndx ring sSet ndx · ˙