Metamath Proof Explorer


Theorem zlmvsca

Description: Scalar multiplication operation of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses zlmbas.w W = ℤMod G
zlmvsca.2 · ˙ = G
Assertion zlmvsca · ˙ = W

Proof

Step Hyp Ref Expression
1 zlmbas.w W = ℤMod G
2 zlmvsca.2 · ˙ = G
3 ovex G sSet Scalar ndx ring V
4 2 fvexi · ˙ V
5 vscaid 𝑠 = Slot ndx
6 5 setsid G sSet Scalar ndx ring V · ˙ V · ˙ = G sSet Scalar ndx ring sSet ndx · ˙
7 3 4 6 mp2an · ˙ = G sSet Scalar ndx ring sSet ndx · ˙
8 1 2 zlmval G V W = G sSet Scalar ndx ring sSet ndx · ˙
9 8 fveq2d G V W = G sSet Scalar ndx ring sSet ndx · ˙
10 7 9 eqtr4id G V · ˙ = W
11 5 str0 =
12 fvprc ¬ G V G =
13 2 12 eqtrid ¬ G V · ˙ =
14 fvprc ¬ G V ℤMod G =
15 1 14 eqtrid ¬ G V W =
16 15 fveq2d ¬ G V W =
17 11 13 16 3eqtr4a ¬ G V · ˙ = W
18 10 17 pm2.61i · ˙ = W