Metamath Proof Explorer


Theorem zltaddlt1le

Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021)

Ref Expression
Assertion zltaddlt1le M N A 0 1 M + A < N M + A N

Proof

Step Hyp Ref Expression
1 zre M M
2 1 adantr M A 0 1 M
3 elioore A 0 1 A
4 3 adantl M A 0 1 A
5 2 4 readdcld M A 0 1 M + A
6 5 3adant2 M N A 0 1 M + A
7 zre N N
8 7 3ad2ant2 M N A 0 1 N
9 ltle M + A N M + A < N M + A N
10 6 8 9 syl2anc M N A 0 1 M + A < N M + A N
11 elioo3g A 0 1 0 * 1 * A * 0 < A A < 1
12 simpl 0 < A A < 1 0 < A
13 11 12 simplbiim A 0 1 0 < A
14 3 13 elrpd A 0 1 A +
15 addlelt M N A + M + A N M < N
16 1 7 14 15 syl3an M N A 0 1 M + A N M < N
17 zltp1le M N M < N M + 1 N
18 17 3adant3 M N A 0 1 M < N M + 1 N
19 3 3ad2ant3 M N A 0 1 A
20 1red M N A 0 1 1
21 1 3ad2ant1 M N A 0 1 M
22 simpr 0 < A A < 1 A < 1
23 11 22 simplbiim A 0 1 A < 1
24 23 3ad2ant3 M N A 0 1 A < 1
25 19 20 21 24 ltadd2dd M N A 0 1 M + A < M + 1
26 peano2z M M + 1
27 26 zred M M + 1
28 27 3ad2ant1 M N A 0 1 M + 1
29 ltletr M + A M + 1 N M + A < M + 1 M + 1 N M + A < N
30 6 28 8 29 syl3anc M N A 0 1 M + A < M + 1 M + 1 N M + A < N
31 25 30 mpand M N A 0 1 M + 1 N M + A < N
32 18 31 sylbid M N A 0 1 M < N M + A < N
33 16 32 syld M N A 0 1 M + A N M + A < N
34 10 33 impbid M N A 0 1 M + A < N M + A N