Metamath Proof Explorer


Theorem zltlem1

Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004)

Ref Expression
Assertion zltlem1 M N M < N M N 1

Proof

Step Hyp Ref Expression
1 peano2zm N N 1
2 zleltp1 M N 1 M N 1 M < N - 1 + 1
3 1 2 sylan2 M N M N 1 M < N - 1 + 1
4 zcn N N
5 ax-1cn 1
6 npcan N 1 N - 1 + 1 = N
7 4 5 6 sylancl N N - 1 + 1 = N
8 7 adantl M N N - 1 + 1 = N
9 8 breq2d M N M < N - 1 + 1 M < N
10 3 9 bitr2d M N M < N M N 1