Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zltlem1
Next ⟩
zgt0ge1
Metamath Proof Explorer
Ascii
Unicode
Theorem
zltlem1
Description:
Integer ordering relation.
(Contributed by
NM
, 13-Nov-2004)
Ref
Expression
Assertion
zltlem1
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
<
N
↔
M
≤
N
−
1
Proof
Step
Hyp
Ref
Expression
1
peano2zm
⊢
N
∈
ℤ
→
N
−
1
∈
ℤ
2
zleltp1
⊢
M
∈
ℤ
∧
N
−
1
∈
ℤ
→
M
≤
N
−
1
↔
M
<
N
-
1
+
1
3
1
2
sylan2
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
−
1
↔
M
<
N
-
1
+
1
4
zcn
⊢
N
∈
ℤ
→
N
∈
ℂ
5
ax-1cn
⊢
1
∈
ℂ
6
npcan
⊢
N
∈
ℂ
∧
1
∈
ℂ
→
N
-
1
+
1
=
N
7
4
5
6
sylancl
⊢
N
∈
ℤ
→
N
-
1
+
1
=
N
8
7
adantl
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
N
-
1
+
1
=
N
9
8
breq2d
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
<
N
-
1
+
1
↔
M
<
N
10
3
9
bitr2d
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
<
N
↔
M
≤
N
−
1