Metamath Proof Explorer


Theorem zltlesub

Description: If an integer N is less than or equal to a real, and we subtract a quantity less than 1 , then N is less than or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses zltlesub.n φ N
zltlesub.a φ A
zltlesub.nlea φ N A
zltlesub.b φ B
zltlesub.blt1 φ B < 1
zltlesub.asb φ A B
Assertion zltlesub φ N A B

Proof

Step Hyp Ref Expression
1 zltlesub.n φ N
2 zltlesub.a φ A
3 zltlesub.nlea φ N A
4 zltlesub.b φ B
5 zltlesub.blt1 φ B < 1
6 zltlesub.asb φ A B
7 1 zred φ N
8 6 zred φ A B
9 8 4 readdcld φ A - B + B
10 peano2re A B A - B + 1
11 8 10 syl φ A - B + 1
12 2 recnd φ A
13 4 recnd φ B
14 12 13 npcand φ A - B + B = A
15 3 14 breqtrrd φ N A - B + B
16 1red φ 1
17 4 16 8 5 ltadd2dd φ A - B + B < A - B + 1
18 7 9 11 15 17 lelttrd φ N < A - B + 1
19 zleltp1 N A B N A B N < A - B + 1
20 1 6 19 syl2anc φ N A B N < A - B + 1
21 18 20 mpbird φ N A B