Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
zmod10
Next ⟩
zmod1congr
Metamath Proof Explorer
Ascii
Unicode
Theorem
zmod10
Description:
An integer modulo 1 is 0.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Assertion
zmod10
⊢
N
∈
ℤ
→
N
mod
1
=
0
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
2
modfrac
⊢
N
∈
ℝ
→
N
mod
1
=
N
−
N
3
1
2
syl
⊢
N
∈
ℤ
→
N
mod
1
=
N
−
N
4
flid
⊢
N
∈
ℤ
→
N
=
N
5
4
oveq2d
⊢
N
∈
ℤ
→
N
−
N
=
N
−
N
6
zcn
⊢
N
∈
ℤ
→
N
∈
ℂ
7
6
subidd
⊢
N
∈
ℤ
→
N
−
N
=
0
8
3
5
7
3eqtrd
⊢
N
∈
ℤ
→
N
mod
1
=
0