Metamath Proof Explorer


Theorem zmodfzp1

Description: An integer mod B lies in the first B + 1 nonnegative integers. (Contributed by AV, 27-Oct-2018)

Ref Expression
Assertion zmodfzp1 A B A mod B 0 B

Proof

Step Hyp Ref Expression
1 fzossfz 0 ..^ B 0 B
2 zmodfzo A B A mod B 0 ..^ B
3 1 2 sselid A B A mod B 0 B