Metamath Proof Explorer


Theorem zmodidfzo

Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)

Ref Expression
Assertion zmodidfzo MNMmodN=MM0..^N

Proof

Step Hyp Ref Expression
1 zmodid2 MNMmodN=MM0N1
2 nnz NN
3 fzoval N0..^N=0N1
4 2 3 syl N0..^N=0N1
5 4 adantl MN0..^N=0N1
6 5 eqcomd MN0N1=0..^N
7 6 eleq2d MNM0N1M0..^N
8 1 7 bitrd MNMmodN=MM0..^N