Metamath Proof Explorer


Theorem zmodidfzo

Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)

Ref Expression
Assertion zmodidfzo M N M mod N = M M 0 ..^ N

Proof

Step Hyp Ref Expression
1 zmodid2 M N M mod N = M M 0 N 1
2 nnz N N
3 fzoval N 0 ..^ N = 0 N 1
4 2 3 syl N 0 ..^ N = 0 N 1
5 4 adantl M N 0 ..^ N = 0 N 1
6 5 eqcomd M N 0 N 1 = 0 ..^ N
7 6 eleq2d M N M 0 N 1 M 0 ..^ N
8 1 7 bitrd M N M mod N = M M 0 ..^ N