Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
zmodidfzo
Next ⟩
zmodidfzoimp
Metamath Proof Explorer
Ascii
Unicode
Theorem
zmodidfzo
Description:
Identity law for modulo restricted to integers.
(Contributed by
AV
, 27-Oct-2018)
Ref
Expression
Assertion
zmodidfzo
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
M
mod
N
=
M
↔
M
∈
0
..^
N
Proof
Step
Hyp
Ref
Expression
1
zmodid2
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
M
mod
N
=
M
↔
M
∈
0
…
N
−
1
2
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
3
fzoval
⊢
N
∈
ℤ
→
0
..^
N
=
0
…
N
−
1
4
2
3
syl
⊢
N
∈
ℕ
→
0
..^
N
=
0
…
N
−
1
5
4
adantl
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
0
..^
N
=
0
…
N
−
1
6
5
eqcomd
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
0
…
N
−
1
=
0
..^
N
7
6
eleq2d
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
M
∈
0
…
N
−
1
↔
M
∈
0
..^
N
8
1
7
bitrd
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
M
mod
N
=
M
↔
M
∈
0
..^
N