Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
zmodidfzoimp
Next ⟩
0mod
Metamath Proof Explorer
Ascii
Unicode
Theorem
zmodidfzoimp
Description:
Identity law for modulo restricted to integers.
(Contributed by
AV
, 27-Oct-2018)
Ref
Expression
Assertion
zmodidfzoimp
⊢
M
∈
0
..^
N
→
M
mod
N
=
M
Proof
Step
Hyp
Ref
Expression
1
elfzo0
⊢
M
∈
0
..^
N
↔
M
∈
ℕ
0
∧
N
∈
ℕ
∧
M
<
N
2
nn0z
⊢
M
∈
ℕ
0
→
M
∈
ℤ
3
2
anim1i
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
→
M
∈
ℤ
∧
N
∈
ℕ
4
3
3adant3
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
∧
M
<
N
→
M
∈
ℤ
∧
N
∈
ℕ
5
1
4
sylbi
⊢
M
∈
0
..^
N
→
M
∈
ℤ
∧
N
∈
ℕ
6
zmodidfzo
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
M
mod
N
=
M
↔
M
∈
0
..^
N
7
6
biimprd
⊢
M
∈
ℤ
∧
N
∈
ℕ
→
M
∈
0
..^
N
→
M
mod
N
=
M
8
5
7
mpcom
⊢
M
∈
0
..^
N
→
M
mod
N
=
M