Metamath Proof Explorer


Theorem zmodidfzoimp

Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)

Ref Expression
Assertion zmodidfzoimp M 0 ..^ N M mod N = M

Proof

Step Hyp Ref Expression
1 elfzo0 M 0 ..^ N M 0 N M < N
2 nn0z M 0 M
3 2 anim1i M 0 N M N
4 3 3adant3 M 0 N M < N M N
5 1 4 sylbi M 0 ..^ N M N
6 zmodidfzo M N M mod N = M M 0 ..^ N
7 6 biimprd M N M 0 ..^ N M mod N = M
8 5 7 mpcom M 0 ..^ N M mod N = M