Metamath Proof Explorer


Theorem znbas

Description: The base set of Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znbas.s S = RSpan ring
znbas.y Y = /N
znbas.r R = ring ~ QG S N
Assertion znbas N 0 / R = Base Y

Proof

Step Hyp Ref Expression
1 znbas.s S = RSpan ring
2 znbas.y Y = /N
3 znbas.r R = ring ~ QG S N
4 eqidd N 0 ring / 𝑠 R = ring / 𝑠 R
5 zringbas = Base ring
6 5 a1i N 0 = Base ring
7 3 ovexi R V
8 7 a1i N 0 R V
9 zringring ring Ring
10 9 a1i N 0 ring Ring
11 4 6 8 10 qusbas N 0 / R = Base ring / 𝑠 R
12 3 oveq2i ring / 𝑠 R = ring / 𝑠 ring ~ QG S N
13 1 12 2 znbas2 N 0 Base ring / 𝑠 R = Base Y
14 11 13 eqtrd N 0 / R = Base Y