Metamath Proof Explorer


Theorem znbaslemOLD

Description: Obsolete version of znbaslem as of 3-Nov-2024. Lemma for znbas . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 9-Sep-2021) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses znval2.s S=RSpanring
znval2.u U=ring/𝑠ring~QGSN
znval2.y Y=/N
znbaslemOLD.e E=SlotK
znbaslemOLD.k K
znbaslemOLD.l K<10
Assertion znbaslemOLD N0EU=EY

Proof

Step Hyp Ref Expression
1 znval2.s S=RSpanring
2 znval2.u U=ring/𝑠ring~QGSN
3 znval2.y Y=/N
4 znbaslemOLD.e E=SlotK
5 znbaslemOLD.k K
6 znbaslemOLD.l K<10
7 4 5 ndxid E=SlotEndx
8 5 nnrei K
9 8 6 ltneii K10
10 4 5 ndxarg Endx=K
11 plendx ndx=10
12 10 11 neeq12i EndxndxK10
13 9 12 mpbir Endxndx
14 7 13 setsnid EU=EUsSetndxY
15 eqid Y=Y
16 1 2 3 15 znval2 N0Y=UsSetndxY
17 16 fveq2d N0EY=EUsSetndxY
18 14 17 eqtr4id N0EU=EY