Metamath Proof Explorer


Theorem zncrng

Description: Z/nZ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis zncrng.y Y = /N
Assertion zncrng N 0 Y CRing

Proof

Step Hyp Ref Expression
1 zncrng.y Y = /N
2 nn0z N 0 N
3 eqid RSpan ring = RSpan ring
4 eqid ring / 𝑠 ring ~ QG RSpan ring N = ring / 𝑠 ring ~ QG RSpan ring N
5 3 4 zncrng2 N ring / 𝑠 ring ~ QG RSpan ring N CRing
6 2 5 syl N 0 ring / 𝑠 ring ~ QG RSpan ring N CRing
7 eqidd N 0 Base ring / 𝑠 ring ~ QG RSpan ring N = Base ring / 𝑠 ring ~ QG RSpan ring N
8 3 4 1 znbas2 N 0 Base ring / 𝑠 ring ~ QG RSpan ring N = Base Y
9 3 4 1 znadd N 0 + ring / 𝑠 ring ~ QG RSpan ring N = + Y
10 9 oveqdr N 0 x Base ring / 𝑠 ring ~ QG RSpan ring N y Base ring / 𝑠 ring ~ QG RSpan ring N x + ring / 𝑠 ring ~ QG RSpan ring N y = x + Y y
11 3 4 1 znmul N 0 ring / 𝑠 ring ~ QG RSpan ring N = Y
12 11 oveqdr N 0 x Base ring / 𝑠 ring ~ QG RSpan ring N y Base ring / 𝑠 ring ~ QG RSpan ring N x ring / 𝑠 ring ~ QG RSpan ring N y = x Y y
13 7 8 10 12 crngpropd N 0 ring / 𝑠 ring ~ QG RSpan ring N CRing Y CRing
14 6 13 mpbid N 0 Y CRing