Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
zncrng
Next ⟩
znzrh2
Metamath Proof Explorer
Ascii
Unicode
Theorem
zncrng
Description:
Z/nZ
is a commutative ring.
(Contributed by
Mario Carneiro
, 15-Jun-2015)
Ref
Expression
Hypothesis
zncrng.y
⊢
Y
=
ℤ
/
N
ℤ
Assertion
zncrng
⊢
N
∈
ℕ
0
→
Y
∈
CRing
Proof
Step
Hyp
Ref
Expression
1
zncrng.y
⊢
Y
=
ℤ
/
N
ℤ
2
nn0z
⊢
N
∈
ℕ
0
→
N
∈
ℤ
3
eqid
⊢
RSpan
⁡
ℤ
ring
=
RSpan
⁡
ℤ
ring
4
eqid
⊢
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
=
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
5
3
4
zncrng2
⊢
N
∈
ℤ
→
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
∈
CRing
6
2
5
syl
⊢
N
∈
ℕ
0
→
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
∈
CRing
7
eqidd
⊢
N
∈
ℕ
0
→
Base
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
=
Base
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
8
3
4
1
znbas2
⊢
N
∈
ℕ
0
→
Base
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
=
Base
Y
9
3
4
1
znadd
⊢
N
∈
ℕ
0
→
+
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
=
+
Y
10
9
oveqdr
⊢
N
∈
ℕ
0
∧
x
∈
Base
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
∧
y
∈
Base
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
→
x
+
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
y
=
x
+
Y
y
11
3
4
1
znmul
⊢
N
∈
ℕ
0
→
⋅
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
=
⋅
Y
12
11
oveqdr
⊢
N
∈
ℕ
0
∧
x
∈
Base
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
∧
y
∈
Base
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
→
x
⋅
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
y
=
x
⋅
Y
y
13
7
8
10
12
crngpropd
⊢
N
∈
ℕ
0
→
ℤ
ring
/
𝑠
ℤ
ring
~
QG
RSpan
⁡
ℤ
ring
⁡
N
∈
CRing
↔
Y
∈
CRing
14
6
13
mpbid
⊢
N
∈
ℕ
0
→
Y
∈
CRing