Metamath Proof Explorer


Theorem zndvds

Description: Express equality of equivalence classes in ZZ / n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses zncyg.y Y = /N
zndvds.2 L = ℤRHom Y
Assertion zndvds N 0 A B L A = L B N A B

Proof

Step Hyp Ref Expression
1 zncyg.y Y = /N
2 zndvds.2 L = ℤRHom Y
3 eqcom L A = L B L B = L A
4 eqid RSpan ring = RSpan ring
5 eqid ring ~ QG RSpan ring N = ring ~ QG RSpan ring N
6 4 5 1 2 znzrhval N 0 B L B = B ring ~ QG RSpan ring N
7 6 3adant2 N 0 A B L B = B ring ~ QG RSpan ring N
8 4 5 1 2 znzrhval N 0 A L A = A ring ~ QG RSpan ring N
9 8 3adant3 N 0 A B L A = A ring ~ QG RSpan ring N
10 7 9 eqeq12d N 0 A B L B = L A B ring ~ QG RSpan ring N = A ring ~ QG RSpan ring N
11 zringring ring Ring
12 nn0z N 0 N
13 12 3ad2ant1 N 0 A B N
14 13 snssd N 0 A B N
15 zringbas = Base ring
16 eqid LIdeal ring = LIdeal ring
17 4 15 16 rspcl ring Ring N RSpan ring N LIdeal ring
18 11 14 17 sylancr N 0 A B RSpan ring N LIdeal ring
19 16 lidlsubg ring Ring RSpan ring N LIdeal ring RSpan ring N SubGrp ring
20 11 18 19 sylancr N 0 A B RSpan ring N SubGrp ring
21 15 5 eqger RSpan ring N SubGrp ring ring ~ QG RSpan ring N Er
22 20 21 syl N 0 A B ring ~ QG RSpan ring N Er
23 simp3 N 0 A B B
24 22 23 erth N 0 A B B ring ~ QG RSpan ring N A B ring ~ QG RSpan ring N = A ring ~ QG RSpan ring N
25 zringabl ring Abel
26 15 16 lidlss RSpan ring N LIdeal ring RSpan ring N
27 18 26 syl N 0 A B RSpan ring N
28 eqid - ring = - ring
29 15 28 5 eqgabl ring Abel RSpan ring N B ring ~ QG RSpan ring N A B A A - ring B RSpan ring N
30 25 27 29 sylancr N 0 A B B ring ~ QG RSpan ring N A B A A - ring B RSpan ring N
31 simp2 N 0 A B A
32 23 31 jca N 0 A B B A
33 32 biantrurd N 0 A B A - ring B RSpan ring N B A A - ring B RSpan ring N
34 df-3an B A A - ring B RSpan ring N B A A - ring B RSpan ring N
35 33 34 bitr4di N 0 A B A - ring B RSpan ring N B A A - ring B RSpan ring N
36 zsubrg SubRing fld
37 subrgsubg SubRing fld SubGrp fld
38 36 37 mp1i N 0 A B SubGrp fld
39 cnfldsub = - fld
40 df-zring ring = fld 𝑠
41 39 40 28 subgsub SubGrp fld A B A B = A - ring B
42 38 41 syld3an1 N 0 A B A B = A - ring B
43 42 eqcomd N 0 A B A - ring B = A B
44 dvdsrzring = r ring
45 15 4 44 rspsn ring Ring N RSpan ring N = x | N x
46 11 13 45 sylancr N 0 A B RSpan ring N = x | N x
47 43 46 eleq12d N 0 A B A - ring B RSpan ring N A B x | N x
48 ovex A B V
49 breq2 x = A B N x N A B
50 48 49 elab A B x | N x N A B
51 47 50 bitrdi N 0 A B A - ring B RSpan ring N N A B
52 30 35 51 3bitr2d N 0 A B B ring ~ QG RSpan ring N A N A B
53 10 24 52 3bitr2d N 0 A B L B = L A N A B
54 3 53 syl5bb N 0 A B L A = L B N A B