Description: Express equality of equivalence classes in ZZ / n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zncyg.y | |
|
| zndvds.2 | |
||
| Assertion | zndvds | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncyg.y | |
|
| 2 | zndvds.2 | |
|
| 3 | eqcom | |
|
| 4 | eqid | |
|
| 5 | eqid | |
|
| 6 | 4 5 1 2 | znzrhval | |
| 7 | 6 | 3adant2 | |
| 8 | 4 5 1 2 | znzrhval | |
| 9 | 8 | 3adant3 | |
| 10 | 7 9 | eqeq12d | |
| 11 | zringring | |
|
| 12 | nn0z | |
|
| 13 | 12 | 3ad2ant1 | |
| 14 | 13 | snssd | |
| 15 | zringbas | |
|
| 16 | eqid | |
|
| 17 | 4 15 16 | rspcl | |
| 18 | 11 14 17 | sylancr | |
| 19 | 16 | lidlsubg | |
| 20 | 11 18 19 | sylancr | |
| 21 | 15 5 | eqger | |
| 22 | 20 21 | syl | |
| 23 | simp3 | |
|
| 24 | 22 23 | erth | |
| 25 | zringabl | |
|
| 26 | 15 16 | lidlss | |
| 27 | 18 26 | syl | |
| 28 | eqid | |
|
| 29 | 15 28 5 | eqgabl | |
| 30 | 25 27 29 | sylancr | |
| 31 | simp2 | |
|
| 32 | 23 31 | jca | |
| 33 | 32 | biantrurd | |
| 34 | df-3an | |
|
| 35 | 33 34 | bitr4di | |
| 36 | zsubrg | |
|
| 37 | subrgsubg | |
|
| 38 | 36 37 | mp1i | |
| 39 | cnfldsub | |
|
| 40 | df-zring | |
|
| 41 | 39 40 28 | subgsub | |
| 42 | 38 41 | syld3an1 | |
| 43 | 42 | eqcomd | |
| 44 | dvdsrzring | |
|
| 45 | 15 4 44 | rspsn | |
| 46 | 11 13 45 | sylancr | |
| 47 | 43 46 | eleq12d | |
| 48 | ovex | |
|
| 49 | breq2 | |
|
| 50 | 48 49 | elab | |
| 51 | 47 50 | bitrdi | |
| 52 | 30 35 51 | 3bitr2d | |
| 53 | 10 24 52 | 3bitr2d | |
| 54 | 3 53 | bitrid | |