Metamath Proof Explorer


Theorem zndvds0

Description: Special case of zndvds when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses zncyg.y Y = /N
zndvds.2 L = ℤRHom Y
zndvds0.3 0 ˙ = 0 Y
Assertion zndvds0 N 0 A L A = 0 ˙ N A

Proof

Step Hyp Ref Expression
1 zncyg.y Y = /N
2 zndvds.2 L = ℤRHom Y
3 zndvds0.3 0 ˙ = 0 Y
4 0z 0
5 1 2 zndvds N 0 A 0 L A = L 0 N A 0
6 4 5 mp3an3 N 0 A L A = L 0 N A 0
7 1 zncrng N 0 Y CRing
8 7 adantr N 0 A Y CRing
9 crngring Y CRing Y Ring
10 2 zrhrhm Y Ring L ring RingHom Y
11 8 9 10 3syl N 0 A L ring RingHom Y
12 rhmghm L ring RingHom Y L ring GrpHom Y
13 zring0 0 = 0 ring
14 13 3 ghmid L ring GrpHom Y L 0 = 0 ˙
15 11 12 14 3syl N 0 A L 0 = 0 ˙
16 15 eqeq2d N 0 A L A = L 0 L A = 0 ˙
17 simpr N 0 A A
18 17 zcnd N 0 A A
19 18 subid1d N 0 A A 0 = A
20 19 breq2d N 0 A N A 0 N A
21 6 16 20 3bitr3d N 0 A L A = 0 ˙ N A