Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
znegcl
Next ⟩
neg1z
Metamath Proof Explorer
Ascii
Unicode
Theorem
znegcl
Description:
Closure law for negative integers.
(Contributed by
NM
, 9-May-2004)
Ref
Expression
Assertion
znegcl
⊢
N
∈
ℤ
→
−
N
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
elz
⊢
N
∈
ℤ
↔
N
∈
ℝ
∧
N
=
0
∨
N
∈
ℕ
∨
−
N
∈
ℕ
2
negeq
⊢
N
=
0
→
−
N
=
−
0
3
neg0
⊢
−
0
=
0
4
2
3
eqtrdi
⊢
N
=
0
→
−
N
=
0
5
0z
⊢
0
∈
ℤ
6
4
5
eqeltrdi
⊢
N
=
0
→
−
N
∈
ℤ
7
nnnegz
⊢
N
∈
ℕ
→
−
N
∈
ℤ
8
nnz
⊢
−
N
∈
ℕ
→
−
N
∈
ℤ
9
6
7
8
3jaoi
⊢
N
=
0
∨
N
∈
ℕ
∨
−
N
∈
ℕ
→
−
N
∈
ℤ
10
1
9
simplbiim
⊢
N
∈
ℤ
→
−
N
∈
ℤ