Metamath Proof Explorer


Theorem znegclb

Description: A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion znegclb A A A

Proof

Step Hyp Ref Expression
1 znegcl A A
2 znegcl A A
3 negneg A A = A
4 3 eleq1d A A A
5 2 4 syl5ib A A A
6 1 5 impbid2 A A A