Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
znegcld
Next ⟩
peano2zd
Metamath Proof Explorer
Ascii
Unicode
Theorem
znegcld
Description:
Closure law for negative integers.
(Contributed by
Mario Carneiro
, 28-May-2016)
Ref
Expression
Hypothesis
zred.1
⊢
φ
→
A
∈
ℤ
Assertion
znegcld
⊢
φ
→
−
A
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
zred.1
⊢
φ
→
A
∈
ℤ
2
znegcl
⊢
A
∈
ℤ
→
−
A
∈
ℤ
3
1
2
syl
⊢
φ
→
−
A
∈
ℤ