Metamath Proof Explorer


Theorem znfi

Description: The Z/nZ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses zntos.y Y = /N
znhash.1 B = Base Y
Assertion znfi N B Fin

Proof

Step Hyp Ref Expression
1 zntos.y Y = /N
2 znhash.1 B = Base Y
3 1 2 znhash N B = N
4 nnnn0 N N 0
5 3 4 eqeltrd N B 0
6 2 fvexi B V
7 hashclb B V B Fin B 0
8 6 7 ax-mp B Fin B 0
9 5 8 sylibr N B Fin