| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zntos.y |
|
| 2 |
|
prmnn |
|
| 3 |
|
nnnn0 |
|
| 4 |
2 3
|
syl |
|
| 5 |
1
|
zncrng |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
crngring |
|
| 8 |
2 3 5 7
|
4syl |
|
| 9 |
|
hash2 |
|
| 10 |
|
prmuz2 |
|
| 11 |
|
eluzle |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
1 13
|
znhash |
|
| 15 |
2 14
|
syl |
|
| 16 |
12 15
|
breqtrrd |
|
| 17 |
9 16
|
eqbrtrid |
|
| 18 |
|
2onn |
|
| 19 |
|
nnfi |
|
| 20 |
18 19
|
ax-mp |
|
| 21 |
|
fvex |
|
| 22 |
|
hashdom |
|
| 23 |
20 21 22
|
mp2an |
|
| 24 |
17 23
|
sylib |
|
| 25 |
13
|
isnzr2 |
|
| 26 |
8 24 25
|
sylanbrc |
|
| 27 |
|
eqid |
|
| 28 |
1 13 27
|
znzrhfo |
|
| 29 |
4 28
|
syl |
|
| 30 |
|
foelrn |
|
| 31 |
|
foelrn |
|
| 32 |
30 31
|
anim12dan |
|
| 33 |
29 32
|
sylan |
|
| 34 |
|
reeanv |
|
| 35 |
|
euclemma |
|
| 36 |
35
|
3expb |
|
| 37 |
8
|
adantr |
|
| 38 |
27
|
zrhrhm |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
simprl |
|
| 41 |
|
simprr |
|
| 42 |
|
zringbas |
|
| 43 |
|
zringmulr |
|
| 44 |
|
eqid |
|
| 45 |
42 43 44
|
rhmmul |
|
| 46 |
39 40 41 45
|
syl3anc |
|
| 47 |
46
|
eqeq1d |
|
| 48 |
|
zmulcl |
|
| 49 |
|
eqid |
|
| 50 |
1 27 49
|
zndvds0 |
|
| 51 |
4 48 50
|
syl2an |
|
| 52 |
47 51
|
bitr3d |
|
| 53 |
1 27 49
|
zndvds0 |
|
| 54 |
4 40 53
|
syl2an2r |
|
| 55 |
1 27 49
|
zndvds0 |
|
| 56 |
4 41 55
|
syl2an2r |
|
| 57 |
54 56
|
orbi12d |
|
| 58 |
36 52 57
|
3bitr4d |
|
| 59 |
58
|
biimpd |
|
| 60 |
|
oveq12 |
|
| 61 |
60
|
eqeq1d |
|
| 62 |
|
eqeq1 |
|
| 63 |
62
|
orbi1d |
|
| 64 |
|
eqeq1 |
|
| 65 |
64
|
orbi2d |
|
| 66 |
63 65
|
sylan9bb |
|
| 67 |
61 66
|
imbi12d |
|
| 68 |
59 67
|
syl5ibrcom |
|
| 69 |
68
|
rexlimdvva |
|
| 70 |
34 69
|
biimtrrid |
|
| 71 |
70
|
imp |
|
| 72 |
33 71
|
syldan |
|
| 73 |
72
|
ralrimivva |
|
| 74 |
13 44 49
|
isdomn |
|
| 75 |
26 73 74
|
sylanbrc |
|
| 76 |
|
isidom |
|
| 77 |
6 75 76
|
sylanbrc |
|
| 78 |
1 13
|
znfi |
|
| 79 |
2 78
|
syl |
|
| 80 |
13
|
fiidomfld |
|
| 81 |
79 80
|
syl |
|
| 82 |
77 81
|
mpbid |
|