Step |
Hyp |
Ref |
Expression |
1 |
|
zntos.y |
|
2 |
|
prmnn |
|
3 |
|
nnnn0 |
|
4 |
2 3
|
syl |
|
5 |
1
|
zncrng |
|
6 |
4 5
|
syl |
|
7 |
|
crngring |
|
8 |
2 3 5 7
|
4syl |
|
9 |
|
hash2 |
|
10 |
|
prmuz2 |
|
11 |
|
eluzle |
|
12 |
10 11
|
syl |
|
13 |
|
eqid |
|
14 |
1 13
|
znhash |
|
15 |
2 14
|
syl |
|
16 |
12 15
|
breqtrrd |
|
17 |
9 16
|
eqbrtrid |
|
18 |
|
2onn |
|
19 |
|
nnfi |
|
20 |
18 19
|
ax-mp |
|
21 |
|
fvex |
|
22 |
|
hashdom |
|
23 |
20 21 22
|
mp2an |
|
24 |
17 23
|
sylib |
|
25 |
13
|
isnzr2 |
|
26 |
8 24 25
|
sylanbrc |
|
27 |
|
eqid |
|
28 |
1 13 27
|
znzrhfo |
|
29 |
4 28
|
syl |
|
30 |
|
foelrn |
|
31 |
|
foelrn |
|
32 |
30 31
|
anim12dan |
|
33 |
29 32
|
sylan |
|
34 |
|
reeanv |
|
35 |
|
euclemma |
|
36 |
35
|
3expb |
|
37 |
8
|
adantr |
|
38 |
27
|
zrhrhm |
|
39 |
37 38
|
syl |
|
40 |
|
simprl |
|
41 |
|
simprr |
|
42 |
|
zringbas |
|
43 |
|
zringmulr |
|
44 |
|
eqid |
|
45 |
42 43 44
|
rhmmul |
|
46 |
39 40 41 45
|
syl3anc |
|
47 |
46
|
eqeq1d |
|
48 |
|
zmulcl |
|
49 |
|
eqid |
|
50 |
1 27 49
|
zndvds0 |
|
51 |
4 48 50
|
syl2an |
|
52 |
47 51
|
bitr3d |
|
53 |
1 27 49
|
zndvds0 |
|
54 |
4 40 53
|
syl2an2r |
|
55 |
1 27 49
|
zndvds0 |
|
56 |
4 41 55
|
syl2an2r |
|
57 |
54 56
|
orbi12d |
|
58 |
36 52 57
|
3bitr4d |
|
59 |
58
|
biimpd |
|
60 |
|
oveq12 |
|
61 |
60
|
eqeq1d |
|
62 |
|
eqeq1 |
|
63 |
62
|
orbi1d |
|
64 |
|
eqeq1 |
|
65 |
64
|
orbi2d |
|
66 |
63 65
|
sylan9bb |
|
67 |
61 66
|
imbi12d |
|
68 |
59 67
|
syl5ibrcom |
|
69 |
68
|
rexlimdvva |
|
70 |
34 69
|
syl5bir |
|
71 |
70
|
imp |
|
72 |
33 71
|
syldan |
|
73 |
72
|
ralrimivva |
|
74 |
13 44 49
|
isdomn |
|
75 |
26 73 74
|
sylanbrc |
|
76 |
|
isidom |
|
77 |
6 75 76
|
sylanbrc |
|
78 |
1 13
|
znfi |
|
79 |
2 78
|
syl |
|
80 |
13
|
fiidomfld |
|
81 |
79 80
|
syl |
|
82 |
77 81
|
mpbid |
|