Metamath Proof Explorer


Theorem znleval2

Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znle2.y Y=/N
znle2.f F=ℤRHomYW
znle2.w W=ifN=00..^N
znle2.l ˙=Y
znleval.x X=BaseY
Assertion znleval2 N0AXBXA˙BF-1AF-1B

Proof

Step Hyp Ref Expression
1 znle2.y Y=/N
2 znle2.f F=ℤRHomYW
3 znle2.w W=ifN=00..^N
4 znle2.l ˙=Y
5 znleval.x X=BaseY
6 1 2 3 4 5 znleval N0A˙BAXBXF-1AF-1B
7 6 3ad2ant1 N0AXBXA˙BAXBXF-1AF-1B
8 3simpc N0AXBXAXBX
9 8 biantrurd N0AXBXF-1AF-1BAXBXF-1AF-1B
10 df-3an AXBXF-1AF-1BAXBXF-1AF-1B
11 9 10 bitr4di N0AXBXF-1AF-1BAXBXF-1AF-1B
12 7 11 bitr4d N0AXBXA˙BF-1AF-1B