Metamath Proof Explorer


Theorem znlidl

Description: The set n ZZ is an ideal in ZZ . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypothesis znval.s S=RSpanring
Assertion znlidl NSNLIdealring

Proof

Step Hyp Ref Expression
1 znval.s S=RSpanring
2 zringring ringRing
3 snssi NN
4 zringbas =Basering
5 eqid LIdealring=LIdealring
6 1 4 5 rspcl ringRingNSNLIdealring
7 2 3 6 sylancr NSNLIdealring