Metamath Proof Explorer


Theorem znlidl

Description: The set n ZZ is an ideal in ZZ . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypothesis znval.s S = RSpan ring
Assertion znlidl N S N LIdeal ring

Proof

Step Hyp Ref Expression
1 znval.s S = RSpan ring
2 zringring ring Ring
3 snssi N N
4 zringbas = Base ring
5 eqid LIdeal ring = LIdeal ring
6 1 4 5 rspcl ring Ring N S N LIdeal ring
7 2 3 6 sylancr N S N LIdeal ring