Metamath Proof Explorer


Theorem znnen

Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of Gleason p. 140. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 13-Jun-2014)

Ref Expression
Assertion znnen

Proof

Step Hyp Ref Expression
1 omelon ω On
2 nnenom ω
3 2 ensymi ω
4 isnumi ω On ω dom card
5 1 3 4 mp2an dom card
6 xpnum dom card dom card × dom card
7 5 5 6 mp2an × dom card
8 subf : ×
9 ffun : × Fun
10 8 9 ax-mp Fun
11 nnsscn
12 xpss12 × ×
13 11 11 12 mp2an × ×
14 8 fdmi dom = ×
15 13 14 sseqtrri × dom
16 fores Fun × dom × : × onto ×
17 10 15 16 mp2an × : × onto ×
18 dfz2 = ×
19 foeq3 = × × : × onto × : × onto ×
20 18 19 ax-mp × : × onto × : × onto ×
21 17 20 mpbir × : × onto
22 fodomnum × dom card × : × onto ×
23 7 21 22 mp2 ×
24 xpnnen ×
25 domentr × ×
26 23 24 25 mp2an
27 zex V
28 nnssz
29 ssdomg V
30 27 28 29 mp2
31 sbth
32 26 30 31 mp2an