Metamath Proof Explorer


Theorem znnn0nn

Description: The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion znnn0nn N ¬ N 0 N

Proof

Step Hyp Ref Expression
1 simpl N ¬ N 0 N
2 1 znegcld N ¬ N 0 N
3 elznn N N N -N 0
4 2 3 sylib N ¬ N 0 N N -N 0
5 4 simprd N ¬ N 0 N -N 0
6 zcn N N
7 6 adantr N ¬ N 0 N
8 7 negnegd N ¬ N 0 -N = N
9 simpr N ¬ N 0 ¬ N 0
10 8 9 eqneltrd N ¬ N 0 ¬ -N 0
11 pm2.24 -N 0 ¬ -N 0 N
12 11 jao1i N -N 0 ¬ -N 0 N
13 5 10 12 sylc N ¬ N 0 N