Step |
Hyp |
Ref |
Expression |
1 |
|
znchr.y |
|
2 |
|
znunit.u |
|
3 |
|
znrrg.e |
|
4 |
|
nnnn0 |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 5 6
|
znzrhfo |
|
8 |
4 7
|
syl |
|
9 |
3 5
|
rrgss |
|
10 |
9
|
sseli |
|
11 |
|
foelrn |
|
12 |
8 10 11
|
syl2an |
|
13 |
12
|
ex |
|
14 |
|
nncn |
|
15 |
14
|
ad2antrr |
|
16 |
|
simplr |
|
17 |
|
nnz |
|
18 |
17
|
ad2antrr |
|
19 |
|
nnne0 |
|
20 |
19
|
ad2antrr |
|
21 |
|
simpr |
|
22 |
21
|
necon3ai |
|
23 |
20 22
|
syl |
|
24 |
|
gcdn0cl |
|
25 |
16 18 23 24
|
syl21anc |
|
26 |
25
|
nncnd |
|
27 |
25
|
nnne0d |
|
28 |
15 26 27
|
divcan2d |
|
29 |
|
gcddvds |
|
30 |
16 18 29
|
syl2anc |
|
31 |
30
|
simpld |
|
32 |
25
|
nnzd |
|
33 |
30
|
simprd |
|
34 |
|
simpll |
|
35 |
|
nndivdvds |
|
36 |
34 25 35
|
syl2anc |
|
37 |
33 36
|
mpbid |
|
38 |
37
|
nnzd |
|
39 |
|
dvdsmulc |
|
40 |
32 16 38 39
|
syl3anc |
|
41 |
31 40
|
mpd |
|
42 |
28 41
|
eqbrtrrd |
|
43 |
|
simpr |
|
44 |
4
|
ad2antrr |
|
45 |
44 7
|
syl |
|
46 |
|
fof |
|
47 |
45 46
|
syl |
|
48 |
47 38
|
ffvelrnd |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
3 5 49 50
|
rrgeq0i |
|
52 |
43 48 51
|
syl2anc |
|
53 |
1
|
zncrng |
|
54 |
4 53
|
syl |
|
55 |
|
crngring |
|
56 |
54 55
|
syl |
|
57 |
56
|
ad2antrr |
|
58 |
6
|
zrhrhm |
|
59 |
57 58
|
syl |
|
60 |
|
zringbas |
|
61 |
|
zringmulr |
|
62 |
60 61 49
|
rhmmul |
|
63 |
59 16 38 62
|
syl3anc |
|
64 |
63
|
eqeq1d |
|
65 |
16 38
|
zmulcld |
|
66 |
1 6 50
|
zndvds0 |
|
67 |
44 65 66
|
syl2anc |
|
68 |
64 67
|
bitr3d |
|
69 |
1 6 50
|
zndvds0 |
|
70 |
44 38 69
|
syl2anc |
|
71 |
52 68 70
|
3imtr3d |
|
72 |
42 71
|
mpd |
|
73 |
15 26 27
|
divcan1d |
|
74 |
37
|
nncnd |
|
75 |
74
|
mulid1d |
|
76 |
72 73 75
|
3brtr4d |
|
77 |
|
1zzd |
|
78 |
37
|
nnne0d |
|
79 |
|
dvdscmulr |
|
80 |
32 77 38 78 79
|
syl112anc |
|
81 |
76 80
|
mpbid |
|
82 |
16 18
|
gcdcld |
|
83 |
|
dvds1 |
|
84 |
82 83
|
syl |
|
85 |
81 84
|
mpbid |
|
86 |
1 2 6
|
znunit |
|
87 |
44 16 86
|
syl2anc |
|
88 |
85 87
|
mpbird |
|
89 |
88
|
ex |
|
90 |
|
eleq1 |
|
91 |
|
eleq1 |
|
92 |
90 91
|
imbi12d |
|
93 |
89 92
|
syl5ibrcom |
|
94 |
93
|
rexlimdva |
|
95 |
94
|
com23 |
|
96 |
13 95
|
mpdd |
|
97 |
96
|
ssrdv |
|
98 |
3 2
|
unitrrg |
|
99 |
56 98
|
syl |
|
100 |
97 99
|
eqssd |
|