Metamath Proof Explorer


Theorem znsqcld

Description: The square of a nonzero integer is a positive integer. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Hypotheses znsqcld.1 φ N
znsqcld.2 φ N 0
Assertion znsqcld φ N 2

Proof

Step Hyp Ref Expression
1 znsqcld.1 φ N
2 znsqcld.2 φ N 0
3 1 zcnd φ N
4 2z 2
5 4 a1i φ 2
6 3 2 5 expne0d φ N 2 0
7 6 neneqd φ ¬ N 2 = 0
8 zsqcl2 N N 2 0
9 1 8 syl φ N 2 0
10 elnn0 N 2 0 N 2 N 2 = 0
11 9 10 sylib φ N 2 N 2 = 0
12 11 orcomd φ N 2 = 0 N 2
13 12 ord φ ¬ N 2 = 0 N 2
14 7 13 mpd φ N 2