Metamath Proof Explorer


Theorem zntos

Description: The Z/nZ structure is a totally ordered set. (The order is not respected by the operations, except in the case N = 0 when it coincides with the ordering on ZZ .) (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis zntos.y Y = /N
Assertion zntos N 0 Y Toset

Proof

Step Hyp Ref Expression
1 zntos.y Y = /N
2 eqid ℤRHom Y if N = 0 0 ..^ N = ℤRHom Y if N = 0 0 ..^ N
3 eqid if N = 0 0 ..^ N = if N = 0 0 ..^ N
4 eqid Y = Y
5 eqid Base Y = Base Y
6 1 2 3 4 5 zntoslem N 0 Y Toset