Metamath Proof Explorer


Theorem znval2

Description: Self-referential expression for the Z/nZ structure. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znval2.s S = RSpan ring
znval2.u U = ring / 𝑠 ring ~ QG S N
znval2.y Y = /N
znval2.l ˙ = Y
Assertion znval2 N 0 Y = U sSet ndx ˙

Proof

Step Hyp Ref Expression
1 znval2.s S = RSpan ring
2 znval2.u U = ring / 𝑠 ring ~ QG S N
3 znval2.y Y = /N
4 znval2.l ˙ = Y
5 eqid ℤRHom U if N = 0 0 ..^ N = ℤRHom U if N = 0 0 ..^ N
6 eqid if N = 0 0 ..^ N = if N = 0 0 ..^ N
7 eqid ℤRHom U if N = 0 0 ..^ N ℤRHom U if N = 0 0 ..^ N -1 = ℤRHom U if N = 0 0 ..^ N ℤRHom U if N = 0 0 ..^ N -1
8 1 2 3 5 6 7 znval N 0 Y = U sSet ndx ℤRHom U if N = 0 0 ..^ N ℤRHom U if N = 0 0 ..^ N -1
9 1 2 3 5 6 4 znle N 0 ˙ = ℤRHom U if N = 0 0 ..^ N ℤRHom U if N = 0 0 ..^ N -1
10 9 opeq2d N 0 ndx ˙ = ndx ℤRHom U if N = 0 0 ..^ N ℤRHom U if N = 0 0 ..^ N -1
11 10 oveq2d N 0 U sSet ndx ˙ = U sSet ndx ℤRHom U if N = 0 0 ..^ N ℤRHom U if N = 0 0 ..^ N -1
12 8 11 eqtr4d N 0 Y = U sSet ndx ˙