Metamath Proof Explorer


Theorem znzrh

Description: The ZZ ring homomorphism of Z/nZ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znval2.s S = RSpan ring
znval2.u U = ring / 𝑠 ring ~ QG S N
znval2.y Y = /N
Assertion znzrh N 0 ℤRHom U = ℤRHom Y

Proof

Step Hyp Ref Expression
1 znval2.s S = RSpan ring
2 znval2.u U = ring / 𝑠 ring ~ QG S N
3 znval2.y Y = /N
4 eqidd N 0 Base U = Base U
5 1 2 3 znbas2 N 0 Base U = Base Y
6 1 2 3 znadd N 0 + U = + Y
7 6 oveqdr N 0 x Base U y Base U x + U y = x + Y y
8 1 2 3 znmul N 0 U = Y
9 8 oveqdr N 0 x Base U y Base U x U y = x Y y
10 4 5 7 9 zrhpropd N 0 ℤRHom U = ℤRHom Y